

R.M.D ENGINEERING COLLEGE

R.S.M. NAGAR, KAVARAIPETTAI – 601206.

DEPARTMENT OF COMUTER SCIENCE AND ENGINEERING COURSE OUTCOMES

Date: 20.9.2021

II Year Courses

Subject Code/Name: MA8351/ DISCRETE MATHEMATICS

Course Outcomes	At the end of this course students will be able to
1	Identify the concepts needed to test the logic of a program
2	Understanding the mathematical induction methods and Inclusion and exclusion principle and applying its applications
3	Apply the concepts and techniques of combinatory and graph theory
4	Utilize the concepts and properties of algebraic structures such as groups, rings and fields.
5	Associate the significance of lattices and Boolean algebra in computer science and engineering.
6	Develop knowledge in Logic, Graphs and algebraic system in engineering.

Subject Code/Name: CS8351/DIGITAL PRINCIPLES AND SYSTEM DESIGN

Course Outcomes	At the end of this course students will be able to
1	Design Digital Circuits using simplified Boolean functions
2	Analyze and Design Combinational Circuits
3	Analyze and Design Synchronous Sequential Circuits
4	Analyze and Design Asynchronous Sequential Circuits
5	Implement designs using Programmable Logic Devices
6	Write HDL code for Combinational and Sequential Circuits

Subject Code/Name: CS8391/DATA STRUCTURES

Course Outcomes	At the end of this course students will be able to
1	Implement abstract data types using arrays and linked list.
2	Apply the linear data structures stack and queue to various computing problems.
3	Make use of different types of trees, a non-linear data structure, for problem solving.
4	Implement the non linear data structure, graph, along with its various operations for computational applications.
5	Differentiate the various sorting and searching algorithms.
6	Explain the different types of hashing techniques.

Subject Code/Name: CS8392/OBJECT ORIENTED PROGRAMMING

Course Outcomes	At the end of this course students will be able to
1	Develop Java programs using OOP principles .
2	Develop Java programs with the concepts inheritance and interfaces
3	Build Java applications using exceptions and I/O streams .
4	Develop Java applications with threads and generics classes .
5	Develop interactive Java programs using swings .
6	Develop real-time applications in Java.

Subject Code/Name: EC8395/COMMUNICATION ENGINEERING

Course Outcomes	At the end of this course students will be able to
1	Describe The Concepts Of Analog Modulation Systems.
2	Illustrate Pulse Communication techniques
3	Apply the concepts of Digital Modulation systems.
4	Solve Source Coding Techniques.
5	Explain the basic principles in the generation of spread spectrum signals.
6	Explain the methods of multiple accesses in communication systems.

Subject Code/Name: CS8381/DATA STRUCTURES LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Write the functions to implement Stack ADT, Linear and Non Linear ADT
2	Write the functions to implement different operations on search trees
3	Able to write the program to implement graph traversal algorithms
4	Understand the sorting and searching algorithms

Subject Code/Name: CS8383/ OBJECT ORIENTED PROGRAMMING LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop and implement Java programs for simple applications that make use of classes, packages and interfaces.
2	Develop and implement Java programs with array list, exception handling andmultithreading .
3	Design applications using file processing, generic programming and event handling.

Subject Code/Name: CS8382/ DIGITAL SYSTEMS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Implement simplified combinational circuits using basic logic gates
2	Implement combinational circuits using MSI devices
3	Implement combinational circuits using MSI devices
4	Implement sequential circuits like registers and counters
5	Simulate combinational and sequential circuits using HDL

Subject Code/Name:MA8402 / PROBABILITY AND QUEUING THEORY

Course Outcomes	At the end of this course students will be able to
1	Understand the fundamental concepts of probability and have knowledge of standard distributions
2	Identify and apply the two dimensional discrete distributions and continuous distributions concepts in real life problems.
3	Apply the concept of random processes in engineering problems.
4	Examine Queueing Models and find the characteristics of Queueing system.
5	Apply the concept of non- Markovian Queueing Models in real life problems.
6	Identify and apply series Queues and Queueing networks in real life problems

Subject Code/Name: CS8491/ COMPUTER ARCHITECTURE

Course Outcomes	At the end of this course students will be able to
1	Demonstrate the basic structure and operation of a computer, Instructions and Addressing modes.
2	Describe the various operations of ALU using fixed point and floating point .
3	Develop the model for the pipelining and handling hazards.
4	Illustrate parallelism and multi core processor.
5	Evaluate the memory hierarchical system including cache memory and virtual memory.
6	Discuss the different ways of communicating with I/O devices and I/O interfaces.

Subject Code/Name: CS8492 DATABASE MANAGEMENT SYSTEMS

Course Outcomes	At the end of this course students will be able to
1	Discuss the fundamental concepts of relational database and SQL
2	Use ER model for Relational model mapping to perform database design effectively
3	Summarize the properties of transactions and concurrency control mechanisms
4	Outline the various storage and optimization techniques
5	Compare and contrast various indexing strategies in different database systems
6	Explain the different advanced databases

Subject Code/Name: CS8451/DESIGN AND ANALYSIS OF ALGORITHMS

Course Outcomes	At the end of this course students will be able to
1	Explain the Analysis of Algorithm Efficiency and Compare the Mathematical analysis for Recursive and Non-recursive algorithms
2	Identify the efficiency of Brute Force And Divide-And-Conquer technique algorithms.
4	Solve the problems using Iterative Improvement technique.
5	Solve the problems using Backtracking and Branch and Bound Technique.
6	Outline the limitations of Algorithm power.

Subject Code/Name: CS8493 /OPERATING SYSTEMS

Course Outcomes	At the end of this course students will be able to
1	Explain the overall view of the computer system and operating system
2	Apply various CPU scheduling algorithms, synchronization primitives and deadlock handling methods
3	Compare and contrast various memory management schemes and file system functionalities
4	Analyze the performance of the various page replacement algorithms and interpret the file system implementation, sharing and protection mechanisms
5	Analyze the performance of the various disk scheduling algorithms
6	Demonstrate administrative tasks on Linux servers and to be familiar with the basics of Mobile OS like iOS and Android

Subject Code/Name: CS8494/SOFTWARE ENGINEERING

Course Outcomes	At the end of this course students will be able to
1	Identify the key activities in managing a software project
2	Compare different process models
3	Summarize the concepts of requirements engineering and analysis modeling
4	Make use of systematic procedure for software design and deployment
5	Compare and contrast the various software testing and maintenance strategies
6	Develop project schedule, identify project costs and efforts required

Subject Code/Name: CS8481/DATABASE MANAGEMENT SYSTEMS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Use typical data definitions and manipulation commands.
2	Design applications to test Nested and Join Queries
3	Implement simple applications that use Views
4	Implement applications that require a Front-end Tool
5	Critically analyze the use of Tables, Views, Functions and Procedures
6	Use typical data definitions and manipulation commands.

Subject Code/Name: CS8461 OPERATING SYSTEMS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Compare the performance of various CPU Scheduling Algorithms
2	Implement Deadlock avoidance and Detection Algorithms
3	Implement Semaphores
4	Create processes and implement IPC
5	Analyze the performance of the various Page Replacement Algorithms
6	Implement File Organization and File Allocation Strategies

Subject Code/Name: HS8461/ADVANCED READING AND WRITING

Course Outcomes	At the end of this course students will be able to
1	Write different types of essays.
2	Write winning job applications.
3	Read and evaluate texts critically.
4	Display critical thinking in various professional contexts
5	Write different types of essays.
6	Write winning job applications.

III Year Courses

Subject Code/Name: MA 8551/Algebra and Number Theory

Course Outcomes	At the end of this course students will be able to
1	Apply the basic notions of groups which will be used to
	solve group theory related problems.
2	Apply the basic notions of rings, fields which will then be
	used to solve related problems.
3	Explain the fundamental concepts of number theory,
	advanced algebra and their role in modern mathematics.
4	Demonstrate the number theory concepts by solving non -trivial related problems.
5	Apply integrated approach to number theory and abstract
	algebra and prove simple theorems.

Subject Code/Name: CS8591/COMPUTER NETWORKS

Course Outcomes	At the end of this course students will be able to
1	Understand the basic layers and its functions, and transmission media in computer networks
2	Understand the performance of different types of networks
3	Inspect the functionalities of data link and media access control protocols
4	Examine different routing algorithms
5	Identify appropriate protocol to be used at the transport layer
6	Explain the working of various application layer protocols.

Subject Code/Name: EC8691/MICROPROCESSORS &MICROCONTROLLERS

Course Outcomes	At the end of this course students will be able to
1	Understand and execute programs based on 8086 microprocessor.
2	Understand the configurations of 8086 and able to design a system.
3	Design Memory Interfacing circuits with 8086.
4	Design and interface I/O circuits with 8086.
5	Understand and execute programs based on 8051microcontroller.
6	Design and implement 8051 microcontroller based systems.

Subject Code/Name: CS8501/THEORY OF COMPUTATION

Course Outcomes	At the end of this course students will be able to
1	Construct automata for any pattern
2	Create regular expression for finite automata
3	Write Context free grammar for any construct.
4	Propose computation solutions using Turing machines.
5	Derive whether a problem is decidable or not.
6	Explain the hierarchy of problems arising in the computer sciences

Subject Code/Name: CS8592/OBJECT ORIENTED ANALYSIS AND DESIGN

Course Outcomes	At the end of this course students will be able to
1	Understand the fundamentals of object modeling
2	To understand and differentiate Unified Process from other approaches.
3	Design a static UML diagrams.
4	Design a dynamic UML and implementation diagrams.
5	To improve the software design with design patterns
6	To test the software against its requirements specification

Subject Code/Name: OCE552/GEOGRAPHIC INFORMATION SYSTEM

Course Outcomes	At the end of this course students will be able to
1	Outline the basic idea about fundamentals of GIS.
2	Understand the types of spatial data models.
3	Discuss about the data input and topology.
4	Understand the data management functions and data output.
5	Outline the application of GIS.
6	Apply the GIS tools to develop real time applications

Subject Code/Name: CS8582 OBJECT ORIENTED ANALYSIS AND DESIGN LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Perform OO analysis and design for a given problem specification
2	Identify and map basic software requirements in UML mapping
3	Improve the software quality using design patterns and to explain the rationale behindapplying specific design patterns
4	Test the compliance of the software with the SRS

Subject Code/Name: CS8581/ NETWORKS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Design and implement a PC-to-PC Communication and transfer files using WINDOWS / UNIX Socket processing.
2	Serial and Parallel Communication using RS232C and 8-bit cable respectively.
3	Simulate and study the performance of CSMA / CD, CSMA / CA, Token Bus and Token Ring protocol.
4	Implement stop and wait, Go back-n, selective repeat protocols.
5	Study the performance of routing protocols and implement a distance vector and link state routing protocol using simulator.
6	Study the security in data transfer and implement encryption and decryption techniques while transferring data.

Subject Code/Name: EC8681 / MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Implement ALP Programs for fixed and Floating Point and Arithmetic using 8086.
2	Implement ALP programs for code converters using 8086.
3	Interface different I/O devices with 8086 processor.
4	Interface A/D and D/A converters using 8086 Microprocessors.
5	Execute arithmetic and logical operation programs in 8051 microcontrollers.
6	Execute arithmetic and logical operation programs in 8086 emulators.

SUBJECT CODE/NAME: CS8651/INTERNET PROGRAMMING

Course Outcomes	At the end of this course students will be able to
1	Construct a basic website using HTML and Cascading Style Sheets.
2	Build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.
3	Develop server side programs using Servlets and JSP
4	Construct simple web pages in PHP and to represent data in XML format.
5	Use AJAX and web services to develop interactive web applications
6	Use various client and server interfacing tools

Subject Code/Name: CS8691-ARTIFICIAL INTELLIGENCE

Course Outcomes	At the end of this course students will be able to
1	To understand the various characteristics of Intelligent agents
2	To learn the different search strategies in Artificial Intelligence
3	To learn to represent knowledge in solving Artificial Intelligence problems
4	To understand the different ways of designing software agents
5	To know about the various applications of Artificial Intelligence

Subject Code/Name: CS8601-MOBILE COMPUTING

Course Outcomes	At the end of this course students will be able to
1	Understand the basic concepts of mobile computing
2	Explain the basics of mobile telecommunication systems
3	Illustrate the generations of telecommunication systems in wireless networks
4	Demonstrate the functionality of MAC, network layer and Identify a routing protocol for a given Ad hoc network
5	Explain the functionality of Transport and Application layers
6	Develop a mobile application using android/blackberry/ios/Windows SDK

Subject Code/Name: CS8602/COMPILER DESIGN

Course Outcomes	At the end of this course students will be able to
1	Understand the different phases of compiler.
2	Design a lexical analyzer for a sample language.
3	Apply different parsing algorithms to develop the parsers for given grammar.
4	Understand syntax-directed translation and run-time environment.
5	Learn to implement code optimization techniques and a simple code generator.
6	Design and implement a scanner and a parser using LEX and YACC tools.

Subject Code/Name: CS8603/DISTRIBUTED SYSTEMS

Course Outcomes	At the end of this course students will be able to
1	To understand the foundations of distributed systems.
2	To learn issues related to clock Synchronization and the need for global state in distributed systems.
3	To learn distributed mutual exclusion and deadlock detection algorithms
4	To understand the significance of agreement, fault tolerance and recovery protocols in Distributed Systems.
5	To learn the characteristics of peer-to-peer and distributed shared memory systems

Subject Code/Name: IT8076/SOFTWARE TESTING

ourse Outcomes	At the end of this course students will be able to
1	Understand the impact of defects in software development process
2	Design test cases suitable for a software development for different domains
3	Identify suitable tests to be carried out
4	Prepare test planning based on the document
5	Develop and validate a test plan
6	Document test plans and test cases designed

Subject Code/Name: HS8581 / Professional Communication

Course Outcomes	At the end of this course students will be able to
1	Effectively communicate technical material in print.
2	Present technical material orally with confidence and poise, including audiovisual materials.
3	Communicate effectively in ways appropriate to the discipline, audience and purpose.
4	Think critically and creatively to generate innovative and optimum solutions
5	Identify, evaluate and synthesize information from a range of sources to optimize process engineering design and development.
6	Engage in continuous education, training and research, and take control of their own learning and development.
7	Work effectively and efficiently individually and in teams
8	Be 'career ready' for the process engineering profession, demonstrate leadership qualities, and work ethically and professionally

SUBJECT CODE/NAME: CS8661/INTERNET PROGRAMMING LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Construct Web pages using HTML/XML and style sheets.
2	Build dynamic web pages with validation using Java Script objects and by applying different event handling mechanisms.
3	Develop dynamic web pages using server side scripting.
4	Use PHP programming to develop web applications.
5	Construct web applications using AJAX and web services
6	Construct Web pages using HTML/XML and style sheets.

Subject Code/Name: CS8662/ MOBILE APPLICATION DEVELOPMENT LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop mobile applications using GUI and Layouts.
2	Develop mobile applications using Event Listener.
3	Develop mobile applications using Databases.
4	Develop mobile applications using RSS Feed, Internal/External Storage, SMS, Multi-threading and GPS.
5	Analyze and discover own mobile app for simple needs.
6	Develop mobile applications using GUI and Layouts.

IV Year Courses

Subject Code/Name: MG8591 / PRINCIPLES OF MANAGEMENT

Course Outcomes	At the end of this course students will be able to
1	Understand the Basics of Management
2	Apprehend the planning process in the organization
3	Realize the concept of organization
4	Demonstrate the ability to directing, leadership and communicate effectively
5	Analysis isolate issues and formulate best control methods.
6	Understand the Practical Importance of Management Skills

Subject Code/Name: CS8792 CRYPTOGRAPHY AND NETWORK SECURITY

Course Outcomes	At the end of this course students will be able to
1	To Understand the fundamentals of networks security, security architecture, threats and vulnerabilities
2	To apply the different cryptographic operations of symmetric cryptographic algorithms
3	To apply the different cryptographic operations of public key cryptography
4	To Apply the various Authentication schemes to simulate different applications.
5	To understand various Security practices
6	To understand System security standards

Subject Code/Name: CS8791/CLOUD COMPUTING

Course Outcomes	At the end of this course students will be able to
1	Describe the principles of Parallel and Distributed Computing and evolution of cloud computing from existing technologies
2	Implement different types of Virtualization technologies and Service Oriented Architecture systemss
3	Elucidate the concepts of NIST Cloud Computing architecture and its design challenges
4	Analyze the issues in Resource provisioning and Security governance in clouds
5	Choose among various cloud technologies for implementing applications
6	Install and use current cloud technologies

Subject Code/Name: OME752/SUPPLY CHAIN MANAGEMENT

Course Outcomes	At the end of this course students will be able to
1	Understand fundamental supply chain management concepts
2	Understand the design factors and various design options of distribution networks in industries
3	Understand the framework of supply chain networks and functions
4	Understand the foundational role of logistics as it relates to transportation and warehousing.
5	Understand the various sourcing decisions in supply chain
6	Understand the supply chain management in IT industries

Subject Code/Name: CS8079/HUMAN COMPUTER INTERACTION

Course Outcomes	At the end of this course students will be able to
1	Examine the effective dialog for HCI
2	Inspect interactive design process in human computer interaction
3	Inspect software design process in human computer interaction
4	Examine various models and theories related to human computer interaction
5	Utilize the HCI implications for designing multimedia/ e-commerce/ e-learning Web sites
6	Build meaningful user interface

Subject Code/Name: CS8711/CLOUD COMPUTING LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Configure various virtualization tools such as Virtual Box, VMware workstation.
2	Design and deploy a web application in a PaaS environment.
3	Learn how to simulate a cloud environment to implement new schedulers.
4	Install and use a generic cloud environment that can be used as a private cloud.
5	Manipulate large data sets in a parallel environment
6	Configure various virtualization tools such as Virtual Box, VMware workstation.

Subject Code/Name: IT8761/SECURITY LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop code for classical Encryption Techniques to solve the problems.
2	Build cryptosystems by applying symmetric and public key encryption algorithms.
3	Construct code for authentication algorithms.
4	Develop a signature scheme using Digital signature standard.
5	Demonstrate the network security system using open source tools
6	Develop code for classical Encryption Techniques to solve the problems.

Subject Code/Name: GE8076/PROFESSIONAL ETHICS IN ENGINEERING

Course Outcomes	At the end of this course students will be able to
1	Create awareness on human values and apply ethics in society.
2	Identify an ethical issue and assess variety of moral issues using ethical theories in engineering
3	Analyze engineering, social experimentation and engineers as responsible experimenters
4	Realize engineer's safety and their responsibilities, professional rights, employee rights, and intellectual property rights.
5	Interpret various types of ethics like business ethics, environmental ethics and computer ethics.
6	Take part an engineers as managers, consulting engineers, engineers as expert witness and advisors

Subject Code/Name: CS8080/INFORMATION RETRIEVAL TECHNIQUES

Course Outcomes	At the end of this course students will be able to
1	Understand the basics of Information Retrieval.
2	Use an open source search engine framework and explore its capabilities.
3	Apply appropriate method of classification or clustering.
4	Design and implement innovative features in a search engine.
5	Design and implement a recommender system.

HOD/CSE 20 9/21

Dr. P. EZHUMALAI, B.E., M Tech., Ph.D., PROFESSOR & HEAD Department of Computer Science & Engineering R.M.D. ENGINEERING COLLEGE, R.S.M. Nagar, Kavaraipettai-601 206. PRINCIPAL 20 9 21

PRINCIPAL

R.M.D. ENGINEERING COLLEGE

KAVARAIPETTAI - 601206

GUMMIDIPOONDI TALUK, THIRUVALLUR DIST,

R.M.D. ENGINEERING COLLEGE

(An Autonomous Institution)

R.S.M. NAGAR, KAVARAIPETTAI - 601206

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERINGCOURSE OUTCOMES (2021-22) Date: 12.8.2021

II Year Courses

Subject Code/Name: MA8353/Transforms and Partial Differential Equations

Course Outcomes	At the end of this course students will be able to
1	To represent the physical processes as partial differential equations and solve both homogenous and non homogeneous equations.
2	To solve Fourier series concept to many applications in engineering.
3	To solve boundary value problems involving heat equation and wave equation.
4	To solve definite integrals by using Fourier Transform techniques.
5	Construct Z- transform and find inverse Z-transform techniques for discrete systems.
6	To solve difference equations using Z - transforms.

Subject Code/Name: EE8351/Digital Logic Circuits

Course Outcomes	At the end of this course students will be able to
1	Ability to design combinational and sequential Circuits.
2	Ability to simulate using software package.
3	Ability to study various number systems and simplify the logical expressions using Boolean functions
4	Ability to design various synchronous and asynchronous circuits.
5	Ability to introduce asynchronous sequential circuits and PLDs
6	Ability to introduce digital simulation for development of application oriented logic circuits.

Subject Code/Name: EE8391/Electromagnetic Theory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand the basic mathematical concepts related to electromagnetic vector fields.
2	Ability to understand the basic concepts about electrostatic fields, electrical potential, energy density and their applications.
3	Ability to acquire the knowledge in magneto static fields, magnetic flux density, vector potential and its applications.
4	Ability to understand the different methods of emf generation and Maxwell's equations
5	Ability to understand the basic concepts electromagnetic waves and characterizing parameters
6	Ability to understand and compute Electromagnetic fields and apply them for design and analysis of electrical equipment and systems

Subject Code/Name: EE8301/Electrical Machines - I

Course Outcomes	At the end of this course students will be able to
1	Ability to analyze the magnetic-circuits.
2	Ability to acquire the knowledge in constructional details of transformers.
3	Ability to understand the concepts of electromechanical energy conversion,
4	Ability to acquire the knowledge in working principles of DC Generator.
5	Ability to acquire the knowledge in working principles of DC Motor
6	Ability to acquire the knowledge in various losses taking place in D.C. Machines

Subject Code/Name: EC8353/Electron Devices and Circuits

Course Outcomes	At the end of this course students will be able to
1	Design and analyze the Rectifier circuits using PN Junction diodes
2	Differentiate the structures and working principle of Electronic switches like UJT, BJT MOSFET etc.
3	Design and analyze the Amplifier circuits using BJT and FET
4	Design Differential & single tuned & Power amplifiers and analyze the parameters to judge their quality.
5	Classify and compare different types of negative feedback in amplifiers,
6	Classify and compare different types of Oscillator circuits

Subject Code/Name: ME8792/Power Plant Engineering

Course Outcomes	At the end of this course students will be able to
1	Summarize the construction and working of thermal power plant, analyze the working of Rankine cycle with its improvisations.
2	Analyze and optimize Diesel, Otto, Dual and Brayton cycle, Summarize the construction and working of diesel and gas turbine power plant
3	Infer the operations of nuclear power plant and the safety measures adopted in nuclear power plant
4	Differentiate the various types of renewable energy systems. Summarize the working of hydro electric power plant.
5	Analyze the load distribution criteria, capital and operating cost of different power plant and tariff types.
6	Compare the site selection criteria for different power plants; distinguish the various pollutions control technologies.

Subject Code/Name: EC8311/Electronics Laboratory

Course Outcomes	At the end of this course students will be able to	
T.	Ability to understand and analyze electronic circuits	

Subject Code/Name: EE8311/Electrical Machines Laboratory-I

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and analyze DC Generator
2	Ability to understand and analyze DC Motor
3	Ability to understand and analyse Transformers

Subject Code/Name: MA8491/Numerical Methods

Course Outcomes	At the end of this course students will be able to
1	Calculate the solution of algebraic and transcendal system of linear equations,
2	To interpolate the values of unknown functions using Newton's Formula
3	Interpret the numerical values of the derivatives and imageals of unknown function
4	Demonstrate first and second order to initial value problem
5	Execute Numerically boundary value problem
6	Classify the solution PDE models representing temporal variations in physical systems through numerical methods.

Subject Code/Name: EE8401/Electrical Machines - II

Course Outcomes	At the end of this course students will be able to
1	Ability to understand the construction and working principle of Synchronous Generator
2	Ability to understand MMF curves and armature windings.
3	Ability to acquire knowledge on Synchronous motor.
4	Ability to understand the construction and working principle of Three phase Induction Motor
5	Ability to understand the construction and working principle of Special Machines
6	Ability to predetermine the performance characteristics of Synchronous Machines.

Subject Code/Name: EE8402/Transmission and Distribution

Course Outcomes	At the end of this course students will be able to
I	To understand the importance and the functioning of transmission line parameters.
2	To understand the concepts of Lines and Insulators.
3	To acquire knowledge on the performance of Transmission lines.
4	To understand the importance of distribution of the electric power in power system.
5	To acquire knowledge on Underground Cabilitys
6	To become familiar with the function of different components used in Transmission and Distribution levels of power system and modelling of these components.

Subject Code/Name: EE8403/Measurements and Instrumentation

Course Outcomes	At the end of this course students will be able to
1	To acquire knowledge on Basic functional elements of instrumentation
2	To understand the concepts of Fundamentals of electrical and electronic instruments
3	Ability to compare between various measurement techniques
4	To acquire knowledge on Various storage and display devices
5	To understand the concepts Various transducers and the data acquisition systems
6	Ability to model and analyze electrical and electronic Instruments and understand the operational features of display Devices and Data Acquisition System.

Subject Code/Name: EE8451/Linear Integrated Circuits and Applications

Course Outcomes	At the end of this course students will be able to
1.	Ability to acquire knowledge in 1C fabrication procedure
2	Ability to analyze the characteristics of Op-Amp
3	To understand the importance of Signal analysis using Op-amp based circuits.
4	Functional blocks and the applications of special ICs like Timers, PLL circuits, regulator Circuits.
5	To understand and acquire knowledge on the Applications of Op-amp
6	Ability to understand and analyse, linear integrated circuits their Fabrication and Application.

Subject Code/Name: IC8451/Control Systems

Course Outcomes	At the end of this course students will be able to
1	Ability to develop various representations of system based on the knowledge of Mathematics, Science and Engineering fundamentals.
2	Ability to do time domain and frequency domain analysis of various models of linear system.
3	Ability to interpret characteristics of the system to develop mathematical model.
4	Ability to design appropriate compensator for the given specifications.
5	Ability to come out with solution for complex control problem.
6	Ability to understand use of PID controller in closed loop system.

Subject Code/Name: EE8411/Electrical Machines Laboratory - II

At the end of this course students will be able to
Ability to understand and analyze EMF and MMF methods
Ability to analyze the characteristics of V and Inverted V curves
Ability to understand the importance of Synchronous machines
Ability to understand the importance of Induction Machines
Ability to acquire knowledge on separation of losses

Subject Code/Name: EE8461/Linear and Digital Integrated Circuits Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and implement Boolean Functions.
2	Ability to understand the importance of code conversion
3	Ability to Design and implement 4-bit shift registers
4	Ability to acquire knowledge on Application of Op-Amp
5	Ability to Design and implement counters using specific counter IC.

Subject Code/Name: EE8412/Technical Seminar

Course Outcomes	At the end of this course students will be able to
1	Ability to review, prepare and present technological developments
2	Ability to face the placement interviews

III Year Courses Subject Code/Name: EE8501/Power System Analysis

Course Outcomes	At the end of this course students will be able to
1	Ability to model the power system under steady state operating condition
2	Ability to understand and apply iterative techniques for power flow analysis
3	Ability to model and carry out short circuit studies on power system
4	Ability to model and analyze stability problems in power system
5	Ability to acquire knowledge on Fault analysis.
6	Ability to model and understand various power system components and carry out power flow, short circuit and stability studies.

Subject Code/Name: EE8551/Microprocessor and Microcontrollers

Course Outcomes	At the end of this course students will be able to
1	Ability to acquire knowledge in Addressing modes & instruction set of 8085 & 8051.
2	Ability to need & use of Interrupt structure 8085 & 8051.
3	Ability to understand the importance of Interfacing
4	Ability to explain the architecture of Microprocessor and Microcontroller.
5	Ability to write the assembly language programme.
6	Ability to develop the Microprocessor and Microcontroller based applications.

Subject Code/Name: EE8552/Power Electronics

Course Outcomes	At the end of this course students will be able to
1	Distinguish the types of power semiconductor devices, and analyze their switching characteristics
2	Construct and demonstrate the operation of controlled rectifiers, and analyze its characteristics and performance parameters of controlled rectifiers
3	Construct and demonstrate the operation of DC-DC switching regulators, and differentiate the switching techniques and basics topologies of DC-DC switching regulators.
4	Apply the different modulation techniques to pulse width modulated inverters and identify the harmonic reduction methods.
5	Construct and demonstrate the operation of AC voltage controller and differentiate its various configurations.
6	Associate Cyclo-converter and matrix converter in AC-AC applications.

Subject Code/Name: EE8591/Digital Signal Processing

Course Outcomes	At the end of this course students will be able to
I	Ability to understand the importance of Fourier transform, digital filters and DS Processors.
2	Ability to acquire knowledge on Signals and systems & their mathematical representation.
3	Ability to understand and analyze the discrete time systems.
4.	Ability to analyze the transformation techniques & their computation.
5	Ability to understand the types of filters and their design for digital implementation.
6	Ability to acquire knowledge on programmability digital signal processor & quantization effects.

Subject Code/Name: CS8392/Object Oriented Programming

Course Outcomes	At the end of this course students will be able to
1	Define the need and the basic concepts of Object Oriented Programming
2	Apply the important features of Object Oriented Programming such as Classes, Objects Inheritance and Polymorphism
3	Illustrate the concepts of templates and Exception handling in real world applications
4	Examine the working of RTTH and casting
5	Interpret the working of IO Streams, file handling and standard template library in practical applications
6	Evaluate real time applications in an efficient manner using Object Oriented Programming principles

Subject Code/Name: OAN551/Sensors and Transducers

Course Outcomes	At the end of this course students will be able to
1	To understand the concepts of measurement technology, classification of transducers & Expertise in various calibration techniques and signal types for sensors
2	To understand the working of various motion, proximity and ranging sensors
3	To learn the various sensors used to measure various physical parameters like force, magnetic and heading Sensors
4	To study the basic principles of optical, pressure, temperature sensors & smart sensors
5	To apply the various sensors in the Automotive and Mechatronics applications
6	To implement the DAQ systems with different sensors for real time applications

Subject Code/Name: EE8511/Control and Instrumentation Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand control theory and apply them to electrical engineering problems
2	Ability to analyze the various types of converters.
3	Ability to design compensators
4	Ability to understand the basic concepts of bridge networks.
5	Ability to the basics of signal conditioning circuits.
6	Ability to study the simulation packages.

Subject Code/Name: HS8581/Professional Communication

Course Outcomes	At the end of this course students will be able to
1	Make effective presentations
2	Participate confidently in Group Discussions.
3	Attend job interviews and be successful in them.
4	Develop adequate Soft Skills required for the workplace

Subject Code/Name: CS8383/Object Oriented Programming Laboratory

Course Outcomes	At the end of this course students will be able to
1	Develop and implement Java programs for simple applications that make use of classes
2	Develop and implement Java programs with array list
3	Design applications using file processing

Subject Code/Name: EE8601/Solid State Drives

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and suggest a converter for solid state drive.
2	Ability to select suitability drive for the given application.
3	Ability to study about the steady state operation and transient dynamics of a motor load system.
4	Ability to analyze the operation of the converter/chopper fed dc drive.
5	Ability to analyze the operation and performance of AC motor drives.
6	Ability to analyze and design the current and speed controllers for a closed loop solid state DC motor drive.

Subject Code/Name: EE8602/Protection and Switchgear

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and analyze Electromagnetic and Static Relays.
2	Ability to suggest suitability circuit breaker.
3	Ability to find the causes of abnormal operating conditions of the apparatus and system.
4	Ability to analyze the characteristics and functions of relays and protection schemes.
5	Ability to study about the apparatus protection, static and numerical relays.
6	Ability to acquire knowledge on functioning of circuit breaker.

Subject Code/Name: EE8691/Embedded Systems

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and analyze Embedded systems.
2	Ability to suggest an embedded system for a given application.
3	Ability to operate various Embedded Development Strategies
4	Ability to study about the bus Communication in processors.
5	Ability to acquire knowledge on various processor scheduling algorithms.
6	Ability to understand basics of Real time operating system.

Subject Code/Name: EE8002/Design of Electrical Apparatus

Course Outcomes	At the end of this course students will be able to
Ĺ	Ability to understand basics of design considerations for rotating and static electrical machines
2	Ability to design of field system for its application.
3	Ability to design single and three phase transformer.
4	Ability to design armature and field of DC machines.
5	Ability to design stator and rotor of induction motor.
6	Ability to design and analyze synchronous machines.

Subject Code/Name: EE8005/Special Electrical Machines

Course Outcomes	At the end of this course students will be able to
I	Ability to analyze and design controllers for special Electrical Machines
2	Ability to acquire the knowledge on construction and operation of stepper motor
3	Ability to acquire the knowledge on construction and operation of stepper switched reluctance motors
4	Ability to construction, principle of operation, switched reluctance motors
5	Ability to acquire the knowledge on construction and operation of permanent magnet brushless D.C. motors.
6	Ability to acquire the knowledge on construction and operation of permanent magnes synchronous motors and to select a special machine for a particular application

Subject Code/Name: EE8661/Power Electronics and Drives Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to practice and understand converter and inverter circuits and apply software for engineering problems.
2	Ability to experiment about switching characteristics various switches.
3	Ability to analyze about AC to DC converter circuits.
4	Ability to analyze about DC to AC circuits.
5	Ability to acquire knowledge on AC to AC converters
6	Ability to acquire knowledge on simulation software.

Subject Code/Name: EE8681/Microprocessors and Microcontrollers Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and apply computing platform and software for engineering problems.
2	Ability to programming logics for code conversion.
3	Ability to acquire knowledge on A/D and D/A.
4	Ability to understand basics of serial communication.
5	Ability to understand and impart knowledge in DC and AC motor interfacing.
6	Ability to understand basics of software simulators.

Subject Code/Name: EE8611/Mini Project

Course Outcomes	At the end of this course students will be able to
1	On Completion of the mini project work students will be in a position to take up
	their final year project work and find solution by formulating proper methodology.

IV Year Courses

Subject Code/Name: EE8701/High Voltage Engineering

Course Outcomes	At the end of this course students will be able to
1	Ability to understand Transients in power system.
2	Ability to understand Generation and measurement of high voltage.
3	Ability to understand High voltage testing.
4	Ability to understand various types of over voltages in power system.
5	Ability to measure over voltages.
6	Ability to test power apparatus and insulation coordination

Subject Code/Name: EE8702/Power System Operation and Control

Course Outcomes	At the end of this course students will be able to
1	Ability to understand the day-to-day operation of electric power system.
2	Ability to analyze the control actions to be implemented on the system to meet the minute-to-minute variation of system demand.
3	Ability to understand the significance of power system operation and control.
4	Ability to acquire knowledge on real power-frequency interaction.
5	Ability to understand the reactive power-voltage interaction.
6	Ability to design SCADA and its application for real time operation.

Subject Code/Name: EE8703/Renewable Energy Systems

Course Outcomes	At the end of this course students will be able to
1	Ability to create awareness about Renewability Energy Sources and technologies.
2	Ability to get adequate inputs on a variety of issues in harnessing Renewability Energy
3	Ability to recognize current and possible future role of renewability energy sources.
4	Ability to explain the various renewability energy resources and technologies and their applications.
5	Ability to understand basics about biomass energy.
6	Ability to acquire knowledge about solar energy.

Subject Code/Name: GE8074/Human Rights

Course Outcomes	At the end of this course students will be able to
1	To understand the origin and detailed classification about the human rights
2	To describe the evolutionary concepts and theories of human rights
3	To develop the critical thinking and understanding of UN Laws and its agencies
4	To understand the constitutional Provisions & Guarantees of Human rights in India
5	To demonstrate the Human Rights Issues of disadvantaged people
6	To apply the implementation of Human rights commission, Judiciary and social movements

Subject Code/Name: EE8010/Power System Transients

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and analyze switching and lightning transients
2	Ability to acquire knowledge on generation of switching transients and their control
3	Ability to analyze the mechanism of lighting strokes
4	Ability to understand the importance of propagation, reflection and refraction of travelling waves
5	Ability to find the voltage transients caused by faults
6	Ability to understand the concept of circuit breaker action, load rejection on integrated power system

Subject Code/Name: OCS752 Introduction to C Programming

Course Outcomes	At the end of this course students will be able to
1	Develop algorithmic solutions to simple computational problems using basic constructs
2	Develop simple applications in C using Control Constructs
3	Design and implement applications using arrays
4	Represent data using string and string operations
5	Decompose a C program into functions and pointers
6	Represent and write program using structure and union

Subject Code/Name: EE8711/Power System Simulation Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand power system planning and operational studies.
2	Ability to acquire knowledge on Formation of Bus Admittance and Impedance Matrice and Solution of Networks.
3	Ability to analyze the power flow using GS and NR method
4	Ability to find Symmetric and Unsymmetrical fault
5	Ability to understand the economic dispatch.
6	Ability to analyze the electromagnetic transients

Subject Code/Name: EE8712/Renewable Energy Systems Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and analyze renewability energy systems.
2	Ability to train the students in Renewability Energy Sources and technologies.
3	Ability to provide adequate inputs on a variety of issues in harnessing Renewability Energy,
4	Ability to simulate the various renewability energy sources,
5	Ability to recognize current and possible future role of renewability energy sources.
6	Ability to understand basics of Intelligent Controllers.

Subject Code/Name: EE8018/Microcontroller Based System Design

Course Outcomes	At the end of this course students will be able to
1.	Ability to understand and apply computing platform and software for engineering problems.
2	Ability to understand the concepts of Architecture of PIC microcontroller
3	Ability to acquire knowledge on Interrupts and timers.
4	Ability to understand the importance of Peripheral devices for data communication.
5	Ability to understand the basics of sensor interfacing
6	Ability to acquire knowledge in Architecture of ARM processors

Subject Code/Name: MG8591/Principles of Management

Course Outcomes	At the end of this course students will be able to
1	Classify and differentiate various managerial theories and relate these theories into practice in different Organizations.
2	Summarize functional aspects of management, planning as well as decision making.
3	Differentiate and categorize types of organizational structure, process of selection and performance appraisal.
4	Relate the importance of motivation, leadership and communication in a management environment.
5	Classify and compare various budgetary and Non budgetary control methods.
6	Apply the control techniques in productivity problems & management

Subject Code/Name: EE8811/Project Work

Course Outcomes	At the end of this course students will be able to
1	On Completion of the project work students will be in a position to take up any
	Challenging practical problems and find solution by formulating proper methodology.

HOD/EEE

HEAD OF THE DEPARTMENT SLECTRICAL & ELECTRONIC ENGINEERING D. ENGINEEU.

PRINCIPAL

PRINCIPAL R.M.D. ENGINEERING COLLEGE

R.M.D. ENGINEERING COLLEGE

(An Autonomous Institution)

R.S.M. NAGAR, KAVARAIPETTAI - 601206.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Date: 12.8.2021

COURSE OUTCOMES (2021-22)

II Year Courses

Subject Code/Name: MA8352 / Linear Algebra and Partial Differential Equations

Course Outcomes	At the end of this course students will be able to
1	Describe the basic notions associated with vector spaces and its properties.
2	Apply the concept of linear transformation
3	Apply the concepts on eigenvalues and eigenvectors of a matrix and inner product spaces.
4	Apply the fundamental concepts of partial differential equations and the various solution procedures for solving the first order non-linear partial differential equations
5	Utilize the Fourier series problems in current flow, sound waves
6	Formulate and solve the physical problems of Engineering.

Subject Code/Name: EC8393 / Fundamentals of Data Structures in C

Course Outcomes	At the end of this course students will be able to
1	Illustrate the basic features of C Programming and their applications
2	Enumerate the structured data types and dynamic memory objects and apply for real world scenario
3	Implement various linear data structures operations and applications in C
4	Implement various non-linear data structures operations and applications in C
5	Analyze the various searching and sorting algorithms and appropriately choose it for a given real world scenario
6	Analyze a hash table and overflow handling

Subject Code/Name: EC8351 / Electronic Circuits I

Course Outcomes	At the end of this course students will be able to
1	Design the amplifier circuits using various biasing methods.
2	Analyze the single stage and multistage BJT amplifiers using small signal equivalent model.
3	Analyze JFET amplifiers using small signal equivalent model.
4	Analyze MOSFET amplifiers using small signal equivalent model.
5	Determine the frequency response of single stage and multistage amplifiers.
6	Design and fault analyze de power supplies

Subject Code/Name: EC8352 / Signals and Systems

Course Outcomes	At the end of this course students will be able to
1	Classify signals as Periodic/ Energy/ Causal/ Odd
2	Determine if a given system is Linear/Causal/ Stable/Time variant
3	Analyze the spectral characteristics of Continuous-Time Signals using Fourier Series Fourier transform and Laplace transform
4	Apply Fourier Transform and Laplace Transform for characterizing the LTI-CT systems
5	Analyze the Discrete time signals using Transforms
6	Apply Fourier and Z- transform for analysis of DT system

Subject Code/Name: EC8392 / Digital Electronics

Course Outcomes	At the end of this course students will be able to
1	Realize Boolean expression using logic gates.
2	Design Combinational circuits for a given functions using logic gates.
3	Implement synchronous and Asynchronous sequential circuits for a given application.
4	Design the combinational logic circuits using Programmable Logic Devices.
5	Use the semiconductor memories and related technologies.
6	Analyze the various logic families and their characteristics

Subject Code/Name: EC8391 / Control Systems Engineering

Course Outcomes	At the end of this course students will be able to
1	Identify the various Control System components and their representations.
2	Analyze the various time domain parameters
3	Analyze the various frequency response plots and its system
4	Apply the concepts of various system stability criterions
5	Design various transfer functions of digital control system using state variable models.
6	Analyze the digital Control System using State Feedback

Subject Code/Name: EC8381 / Fundamentals of Data Structures in C Laboratory

Course Outcomes	At the end of this course students will be able to
1	Design and implement C++ programs for manipulating stacks.
2	Design and implement C++ programs for manipulating queues.
3	Design and implement C++ programs for manipulating linked list and trees.
4	Apply good programming design method for program development.
5	Apply the different data structures for implementing solutions to practical problems.

Subject Code/Name: EC8361 / Analog and Digital Circuits Laboratory

Course Outcomes	At the end of this course students will be able to
1	Design and analyze the frequency Response of Amplifiers
2	Measure CMRR in differential amplifier
3	Analyze the limitation in bandwidth of single stage and multi stage amplifier
4	Simulate Transistor Amplifiers using SPICE
5	Design and implement Combinational and sequential circuits
6	Design Cascode and Cascade amplifiers

Subject Code/Name: HS8381 / Interpersonal Skills / Listening & Speaking

Course Outcomes	At the end of this course students will be able to
1	Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills
2	Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities
3	Improve general and academic listening skills
4	Make effective presentations

Subject Code/Name: MA8451 / Probability and Random Processes

Course Outcomes	At the end of this course students will be able to
I	Illustrate the fundamental knowledge of the concepts of probability and one dimensional random variables.
2	Apply the fundamental knowledge of standard distributions which can describe real life phenomenon.
3	Apply the basic concepts of two-dimensional random variables in engineering applications.
4	Apply the concepts of random processes in engineering disciplines.
5	Apply the concepts of correlation and spectral densities.
6	Analyze the response of random inputs to linear time invariant systems.

Subject Code/Name: EC8452/ Electronic Circuits II

Course Outcomes	At the end of this course students will be able to
1	Analyze different types of amplifiers with negative feedback
2	Design & Analysis of transistorized RC oscillators & LC oscillators
3	Analyze transistorized tuned amplifiers
4	Analyze wave shaping circuits
5	Design & Analysis of multivibrators.
6	Analyze power amplifiers

Subject Code/Name: EC8491/ Communication Theory

Design the concepts of amplitude modulation system
Design the concepts of angle modulation system
Apply the concept of Random Process to design of communication system.
Analyze the noise performance of AM and FM systems
Illustrate the principles of Sampling and quantization
Design the PCM systems

Subject Code/Name: EC8451/ Electromagnetic Fields

Course Outcomes	At the end of this course students will be able to
1	Apply the vector calculus, fundamental laws of physics and to solve EM problems.
2	Analyze electric field and potential for different configurations.
3	Describe the behavior of electric and magnetic fields in the presence of dielectric and magnetic materials.
4	Evaluate Magnetic field, magnetic field intensity and inductances for solenoid, toroid coaxial cables and transmission lines.
5 Design Maxwell's Equations for time varying situations and the boundary of across media boundaries	
6	Explicate electromagnetic wave propagation in lossy and in lossless media

Subject Code/Name: EC8453/ Linear Integrated Circuits

Course Outcomes	At the end of this course students will be able to
1	Design basic building blocks of Op-amp.
2	Design Linear and nonlinear applications of Op-amp.
3	Use analog multiplier IC and PLL for signal processing applications.
4	Design ADC and DAC using Op-amp.
5	Design Waveform generator circuits using Op-amp and IC555 timer.
6	Analyze special function ICs.

Subject Code/Name: GE8291 / Environmental Science and Engineering

Course Outcomes	At the end of this course students will be able to
1	Relate the concepts of different ecosystem and biodiversity present
2	Apply the basic concepts of science and engineering for pollution abatement
3	Explain the different types of natural resources, usage and exploitation
4	Implement scientific, technological, and economic solutions to environmental problems
5	Recognize on the impact of population on environment
6	Relate the concepts of science and environment with engineering process

Subject Code/Name: EC8461 / Circuits Design and Simulation Laboratory

Course Outcomes	At the end of this course students will be able to
1	Design and analyze various types of feedback amplifiers.
2	Design Oscillators and tuned circuits.
3	Design wave-shaping circuits and multivibrators.
4	Design RC integrator and differentiator circuits.
5	Design and simulate feedback amplifiers and oscillators using SPICE tool.
6	Design and simulate wave -shaping circuits and multivibrators using SPICE tool.

Subject Code/Name: EC8462 / Linear Integrated Circuits Laboratory

Course Outcomes	At the end of this course students will be able to	
1	Demonstrate significance of Op-amps and their importance.	
2	Use op-amp as Inverting, non-inverting, Differential Amplifiers, Differentiator and Integrator.	
3	Design instrumentation amplifier and explain the applications of Instrumentation amplifier.	
4	Use op-amp as Low pass, High pass, Band pass filters and explain the frequency response.	
5	Use op-amp to generate Sine and Square waveform generators.	
6	Use IC555 timer to generate square wave form generators.	
7	Use IC565 PLL IC to design Frequency multiplier and demonstrate PLL Characteristics.	
8	Design DC power supply circuits using special function ICs.	
9 Use SPICE software tool to design and analyze the Op-amp Circuits.		
10	Use SPICE software tool to design Analog to Digital and Digital to analog converter	

III Year Courses

Subject Code/Name: EC8501/Digital Communication

Course Outcomes	At the end of this course students will be able to
1	Demonstrate the concepts of information theory and coding
2	Compare the various waveform coding techniques
3	Experiment the baseband transmission and reception schemes
4	Illustrate the different digital modulation schemes and equalization techniques
5	Analyze the PSD and BER of various digital modulation schemes
6	Implement different error control codes
	1 - 7/-

Subject Code/Name: EC8553/ Discrete-Time Signal Processing

Course Outcomes	At the end of this course students will be able to
1	Apply DFT for the analysis of digital signals and systems
2	Design IIR digital filters.
3	Design FIR digital filters.
4	Characterize the effects of finite precision representation on digital filters
5	Understand the DSP functionalities
6	Distinguish between fixed- and floating-point architecture principle.

Subject Code/Name:EC8552/Computer Architecture and Organization

Course Outcomes	At the end of this course students will be able to	
1	Describe the basic structure and operation of digital computer.	
2	Experiment the Fixed point and Floating-point arithmetic operations.	
3	Discuss about implementation schemes of Control unit and Pipeline architecture.	
4	Discuss about pipelined control units and various types of hazards in the instructions.	
5	5 Describe the concept of various memories and interfacing.	
6	Summarize the latest advancements in computer architecture	

Subject Code/Name: EC8551/ Communication Networks

Course Outcomes	At the end of this course students will be able to
1	Describe the Internet architecture and link layer services
2	Analyze various media access and internetworking protocols
3	Apply various routing protocols and algorithms for a given network along with IP addresses
4	Demonstrate the flow of information from one process to another process in the network
5	Summarize the various congestion control and avoidance mechanisms
6	Discuss the various application layer protocols

Subject Code/Name: EC8073 / Medical Electronics

Course Outcomes	At the end of this course students will be able to
1	Discuss the characteristics of the bioelectric signals
2	Describe the measurement techniques for various non electrical parameters.
3	Illustrate the working of human assist devices
4	Discuss the operation of diathermy equipment's.
5	Describe the principle of Bio -Telemetry.
6	Explain the recent trends in diagnosis & Therapy

Subject Code/Name: OMD551 / Basics of Biomedical Instrumentation

Course Outcomes	At the end of this course students will be able to
1	Interpret the different bio potential and its propagation.
2	Describe different types of electrode placement for various physiological recording
3	Design bio amplifier for various physiological recording
4	Illustrate various techniques on non-electrical physiological measurements
5	Recognize the different types of bio-chemical electrodes
6	Recognize the different types of biochemical measurements
	NOTE OF THE PARTY

Subject Code/Name: EC8562 / Digital Signal Processing Laboratory

Course Outcomes	At the end of this course students will be able to
1	Carry out the simulation of DSP systems.
2	Design and implement FIR and IIR filters.
3	Demonstrate their abilities towards DSP processor-based implementation of DSP systems.
4	Analyze Finite word length effect on DSP systems.
5	Demonstrate the applications of FFT to DSP.
6	Implement adaptive filters for various applications of DSP.

Subject Code/Name: EC8561 / Communication Systems Laboratory

Course Outcomes	At the end of this course students will be able to	
1	Apply their knowledge in analog modulation schemes through implementation of AM FM.	
2	Demonstrate the digital modulation schemes through implementation of FSK, PSK and DPSK	
3	Apply various channel coding schemes & demonstrate their capabilities towards the improvement of the noise performance of communication system.	
4	Simulate & validate the various functional modules of a communication system	
5	Analyze the transmission of analog signals using Pulse Code Modulation and Demodulation in the trainer kit.	
6	Detect the Error control coding schemes using Linear Block Codes.	
7	Understand the Equalization concept by Zero Forcing & LMS algorithms.	

Subject Code/Name: EC8563/ Communication Networks Laboratory

Course Outcomes	At the end of this course students will be able to	
I	Design and implement a PC-to-PC Communication and transfer files using WINDOWS / UNIX Socket processing.	
2	Simulate Serial and Parallel Communication using RS232C and 8-bit cable respectively.	
3	Simulate and study the performance of CSMA / CD, CSMA / CA, Token Bus and Token Ring protocol.	
4	Implement stop and wait, Go back-n, selective repeat protocols.	
5	Study the performance of routing protocols and implement a distance vector and link state routing protocol using simulator.	
6	Study the security in data transfer and implement encryption and decryption techniques while transferring data.	

Subject Code/Name: EC8691/Microprocessors and Microcontrollers

Course Outcomes	At the end of this course students will be able to
1	Discuss the architecture of 8086 microprocessor and acquire skills in programming.
2	Analyze the instruction set of 8086 with Programming.
3	Classify the various interfacing techniques with 8086
4	Discuss the architecture of 8051 microcontroller and acquire skills in programming
5	Discuss the features of 8051
6	Implement the knowledge of 8051 in various devices.

Subject Code/Name: EC8095/VLSI Design

Course Outcomes	At the end of this course students will be able to
1	Realize the concepts of digital building blocks using MOS transistor
2	Design combinational MOS circuits and power strategies
3	Design and construct Sequential Circuits and Timing systems
4	Design arithmetic building blocks and memory subsystems
5	Apply and implement FPGA design flow
6	Apply the design techniques for testability and manufacturability

Subject Code/Name; EC8652/Wireless Communication

Course Outcomes	At the end of this course students will be able to
1	Define a wireless channel.
2	Explain the concepts of cellular system
3	Classify multiple access techniques
4	Design and implement various signaling schemes for fading channel
5	Compare multipath mitigation techniques and analyze their performance
6	Discuss various multiple antenna techniques

Subject Code/Name: MG8591 / Principles of Management

Course Outcomes	At the end of this course students will be able to
1	Illustrate the Basics of Management
2	Analyze the planning process in the organization
3	Realize the concept of organization
4	Demonstrate the ability to directing, leadership and communicate effectively
5	Analysis isolate issues and formulate best control methods.
6	Appreciate the Practical Importance of Management Skills

Subject Code/Name: EC8651 / Transmission Lines and RF Systems

Course Outcomes	At the end of this course students will be able to
1	Familiarize with various types of transmission lines and its characteristics
2	Illustrate about high frequency line, power and impedance measurements.
3	Impart technical knowledge in impedance matching using smith chart
4	Discuss basic principles associated with Wave guides
5	Design of active RF Components
6	Familiarize with RF system transceiver Design

Subject Code/Name: EC8004 / Wireless Networks

Course Outcomes	At the end of this course students will be able to
1	Explain various standards and technologies in wireless LAN
2	Illustrate packet delivery and routing mechanism used in mobile network layer.
3	Explain overview of UTMS terrestrial radio access network.
4	Describe about the inter working WLANs and WWANs
5	Describe about 4G networks vision, features and challenges.
6	Classify different technologies used in 4G networks.

Subject Code/Name: EC8681 / Microprocessors and Microcontrollers Laboratory

Course Outcomes	At the end of this course students will be able to
1	Implement ALP Programs for fixed and Floating Point and Arithmetic using 8086.
2	Implement ALP programs for code converters using 8086.
3	Interface different I/O devices with 8086 processor.
4	Interface A/D and D/A converters using 8086 Microprocessors.
5	Execute arithmetic and logical operation programs in 8051 microcontrollers.
6	Execute arithmetic and logical operation programs in 8086 emulators.

Subject Code/Name: EC8661 / VLSI Design Laboratory

Outcomes	At the end of this course students will be able to
1	Write Verilog HDL code for basic as well as advanced digital integrated circuits.
2	Perform Simulate, Synthesize, place and route the logic modules in Xilinx.
3	Implement the Digital logic modules in FPGA boards.
4	Design and simulate the layout of Digital integrated Circuits using EDA tool.
5	Analyze the power, area and timing of digital integrated circuits.
6	Design, simulate and analyze the parameters of Analog Integrated circuits.

Subject Code/Name: HS8581 / Professional Communication

Course Outcomes	At the end of this course students will be able to
1	Effectively communicate technical material in print.
2	Present technical material orally with confidence and poise, including audiovisual materials.
3	Communicate effectively in ways appropriate to the discipline, audience and purpose
4	Think critically and creatively to generate innovative and optimum solutions
5	Identify, evaluate and synthesize information from a range of sources to optimize process engineering design and development.
6	Engage in continuous education, training and research, and take control of their own learning and development.
7	Work effectively and efficiently individually and in teams
8	Be 'career ready' for the process engineering profession, demonstrate leadership qualities, and work ethically and professionally

IV Year Courses

Subject Code/Name: EC8701/ Antenna and Microwave Engineering

Course Outcomes	At the end of this course students will be able to
1.	Apply the basic principles and evaluate antenna parameters and link power budgets
2	Compare the radiation mechanisms of wire and loop antennas
3	Design and assess the performance of aperture and frequency independent antennas
4	Design the radiation pattern of end fire and broad side arrays
5	Describe the working principle of active and passive microwave components
6	Design a microwave system given the application specifications

Subject Code/Name: EC8751/ Optical Communication

Course Outcomes	At the end of this course students will be able to
1.	Describe basic elements in optical fibers, different modes and configurations
2	Summarize the transmission characteristics associated with dispersion and polarization techniques
3	Discuss the Characteristics of various fiber optical sources and detectors
4	Explain fiber optic receiver systems, measurements and coupling techniques
5	Demonstrate optical communication systems and its networks
6	Compare the performance of optical networks

Subject Code/Name: EC8791/ Embedded and Real time systems

Course Outcomes	At the end of this course students will be able to
1	Apply the knowledge of Embedded system design process and design methodologies for Industry applications.
2	Design an Embedded system applications with the knowledge of ARM Processor Architecture and Programming.
3	Analyze the performance and optimization techniques of embedded programming components.
4	Apply the basic concepts of Real Time System for Embedded system design.
5	Analyze the performance and power optimization strategies of Real time operating systems.
6	Design Real time applications using Embedded system design concepts.

Subject Code/Name: EC6014/ Cognitive Radio

Course Outcomes	At the end of this course students will be able to
1	Explain the concepts of software defined radios
2	Describe the Principles of self-aware cognitive radios
3	Compare various approaches for optimizing radio resources
4	Classify the various networking techniques for cognitive Radio
5	Illustrate various security issues in cognitive radio
6	Explain the role of cognitive radio in next generation applications

Subject Code/Name: OIC751 /Transducer Engineering

Course Outcomes	At the end of this course students will be able to
1	Apply the mathematical knowledge and science & engineering fundamentals gained to solve problems pertaining to measurement applications.
2	Design right transducer for a given application
3	Analyze the static and dynamic characteristics of transducers
4	Demonstrate different types of resistive transducers and their application areas.
5	Explain different types of capacitive and inductive transducers
6	Explain Piezoelectric, Hall effect, Magnetoelastic, MEMS and Smart transducers.

Subject Code/Name: EC8702 / ADHOC and Wireless Sensor Networks

Course Outcomes	At the end of this course students will be able to
1	Interpret the basics of Ad hoc networks and Wireless Sensor Networks
2	Apply this knowledge to identify the suitable routing algorithm based on the network and user requirement
3	Apply the knowledge to identify appropriate physical and MAC layer protocols
4	Recognize the transport layer and security issues possible in Ad hoc and sensor networks
5	Familiarize with the OS used in Wireless Sensor Networks and build basic modules
6	Recognize the sensor network simulation platforms and tools

Subject Code/Name:EC8761/ Advanced Communication Lab

Course Outcomes	At the end of this course students will be able to
	Analyze the performance of simple optical link by measurement of losses and analyzing the mode characteristics of fiber
2	Analyze the Eye Pattern, Pulse broadening of optical fiber and the impact on BER
3	Estimate the Wireless Channel Characteristics and Analyze the performance of Wireless Communication System
4	Realize the intricacies in Microwave System design

Subject Code/Name: EC8711/Embedded Lab

Course Outcomes	At the end of this course students will be able to
1	Write programs in Embedded-C in ARM for a specific Application.
2	Write a program to access GPIO pins of ARM microcontroller by interfacing LED and stepper motor
3	Interface memory and Write programs related to memory operations.
4	Interface A/D and D/A converter with ARM system.
5	Analyze the performance of interrupt.
6	Write programs for interfacing keyboard, display, and sensors.
7	Formulate a mini project using embedded system

Subject Code/Name: EC8094/Satellite Communication

Course Outcomes	At the end of this course students will be able to
1	Realize the satellite orbits and its trajectories with the definitions of parameters associated with it.
2	Illustrate the working and operation of various sub systems of satellite as well as the earth stations.
3	Analyze and design satellite communication link
4	Apply various Communication techniques for satellite applications.
5	Acquire advanced techniques and regulatory aspects of satellite communication
6	Realize role of satellite in various applications

Subject Code/Name: GE8076/ Professional Ethics in Engineering

Course Outcomes	At the end of this course students will be able to
1	Create awareness on human values and apply ethics in society.
2	Choose an ethical issue and assess variety of moral issues using ethical theories in engineering.
3	Analyze engineering, social experimentation and engineers as responsible experimenters
4	Perceive engineers' safety and their responsibilities, professional rights, employee rights, and intellectual property rights.
5	Interpret various types of ethics like business ethics, environmental ethics and computer ethics.
6	Create an engineer as managers, consulting engineers, engineers as expert witness and advisors.

HOD/ECE
Dr. K. HELEN PRABHA
PROFESSOR & HEAD
DEPARTMENT OF ELECTRONICS
& COMMUNICATION ENGINEERING
R.M.D. ENG. COLLEGE
R.S.M. NAGAR,
KAVARAIPETTAI-601 206

Kavaraipettai C

PRINCIPAL

PRINCIPAL

R.M.D. ENGINEERING COLLEGE

KAVARAIPETTAI - 601206

GUMMIDIPOONDI TALUK, THIRUVALLUR DIST.

R.M.D ENGINEERING COLLEGE

(An Autonomous Institution)

R.S.M. NAGAR, KAVARAIPETTAI - 601206.

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING COURSE OUTCOMES (R 2017) ODD SEMESTER

III Year Courses

Subject Code/Name: EI8551/ Analytical Instruments

Course Outcomes	At the end of this course students will be able to
1	Ability to understand the fundamental principles of selective analytical instruments used in medical diagnosis, quality assurance & control and research studies.
2	Ability to assess and suggest a suitable analytical method for a specific purpose, and evaluate sensitivity, important sources of interferences and errors, and also suggest alternative analytical methods for quality assurance.
3	Ability to critically evaluate the strengths and limitations of the various instrumental methods.
4	Ability to develop critical thinking for interpreting analytical data.
5	Ability to understand the working principle, types and applications of NMR.
6.	Ability to understand the working principle, types and applications of Mass spectroscopy

Subject Code/Name: E18552/ Industrial Instrumentation - II

Course Outcomes	At the end of this course students will be able to	
1	Demonstrate variable head type flow meters	
2	Illustrate quantity meters, air flow meters and mass flow meters	
3	Explain electrical type flow meters	
4	Identify techniques for level measurement	
5	Explain various types of transmitters	
6	Analyze a suitable instrumentation system for various industries	_

Subject Code/Name: E18553/ Process Control

Course Outcomes	At the end of this course students will be able to
1	Build and analyse models using first principles approach for processes such as level flow, pressure and temperature.
2	Understand and apply actuators, control valves in process Industries.
3	Design PID Controllers to achieve desired performance for various processes
4	Analyze the evaluation criteria and tuning techniques of controllers.
5	Analyze design and implement control Schemes for various Processes
6	Identify, formulate and solve problems in the Process Control Domain

Subject Code/Name: EE8551/ Microprocessors and Microcontrollers

Course Outcomes	At the end of this course students will be able to
1	Describe the functional blocks of 8085 microprocessor
2	Develop an simple assembly language program of 8085 microprocessor
3	Explain the architecture of 8051 microcontroller
4	Analyze the data transfer information through serial and parallel ports.
5	Illustrate how the different peripherals are interfaced with Microprocessor and microcontroller
6	Develop a program for various application of 8051

Subject Code/Name: EE8591/ Digital Signal Processing

Course Outcomes	At the end of this course students will be able to
1	Categorize the different types of signals and systems
2	Examine the LTI systems with different inputs using z-transform
3	compare discrete fourier transform and fast fourier transform
4	Realize FIR filters using windowing techniques
5	Design IIR filters using different types of approximation
6	Summarize the DSP processors and its architectures for different applications.
(2200)	

Subject Code/Name: OCE551/ Air Pollution and Control Engineering

Course Outcomes	At the end of this course students will be able to
1	Ability to understand nature and characteristics of air pollutants
2	Describing the stacks behaviour and comprehend various environmental transformation processes of pollutants under extreme weather condition.
3	Ability to interpret meteorological data
4	Illustrate control equipment's of particulate contaminants in air pollution
5	Illustrate control equipment's of gaseous contaminants in air pollution
6	Ability to comprehend quality, control and preventive measures of noise pollution and Indoor air quality management

Subject Code/Name: EE8681 / Microprocessors and Microcontrollers Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and apply computing platform and software for engineering problems.
2	Ability to programming logics for code conversion.
3	Ability to acquire knowledge on A/D and D/A.
4	Ability to understand basics of serial communication
5	Ability to understand and impart knowledge in DC and AC motor interfacing
6	Ability to understand basics of software simulators

Subject Code/Name: EI8561/ Industrial Instrumentation Laboratory

Course Outcomes	At the end of this course students will be able to
1	To impart an adequate knowledge and expertise to handle equipment generally available in an industry
2	To make the students aware about calibration of meters, sensors and transmitters
3	To make the students conscious about the working and operation of different types of analytical Instruments
4	To identify, formulate, and analyze problems regarding sensors and transmitter

IV Year Courses

Subject Code/Name: E18751/Industrial Data Networks

Course Outcomes	At the end of this course students will be able to
1	Explain the basic concepts of data networks and communication.
2	Explain and relate the functions of networking and internetworking devices and choose the appropriate one depending on application.
3	Compare the characteristics of various communication buses like Fieldbus, and Profibus and select the appropriate one depending on application.
4	Explain the various communication protocols available like HART, MODBUS in data communication and select the appropriate one depending on application.
5	Explain the various Industrial Ethernets.
6	Explain the basic concepts of wireless communication.

Subject Code/Name: EE8691/Embedded Systems

Course Outcomes	At the end of this course students will be able to
1	Discuss the essentials of function and Blocks of Embedded system
2	Explain the different communication network strategies of embedded systems
3	Demonstrate the different phases of embedded product development life cycle (EDLC)
4	Analyze the issues, modeling and computational models in Embedded design
5	Explain the basic concepts and compare the features of real time operating systems (RTOS)
6	Utilize the concepts of Embedded Systems in real time applications

Subject Code/Name: EC8093/Digital Image Processing

Course Outcomes	At the end of this course students will be able to
1	To understand the basics and fundamentals of digital image processing such as digitization,sampling,quantization and 2D transforms
2	To operate on images using the techniques of smoothing, sharpening and enhancement
3	To understand the restoration concepts and filtering techniques
4	To learn the basics of segmentation ,features and extraction
5	To learn the basics of compression methods of color models
6	To learn the recognition methods.

Subject Code/Name: EI8075/Fiber Optics and Laser Instruments

Course Outcomes	At the end of this course students will be able to
1	Classify the types of optical fibers and discuss the various losses and dispersion involved in optical fibers and discuss about various optical sources, optical detectors optical connectors and splices.
2	Illustrate the various applications of lasers in industries.
3	Explain the characteristics and types of lasers.
4	Develop a thorough knowledge about applications of lasers in industries and materia processing
5	Explain the concept of holography using lasers.
6	Interpret the applications of lasers in medical field.

Subject Code/Name: GE8077/Total Quality Management

Course Outcomes	At the end of this course students will be able to
1	Understand the quality philosophies and customer focused managerial system
2	Summarize the quality management principles
3	Apply six sigma concepts in manufacturing and service sector
4	Determine the tools and techniques for quality improvement.
5	Analyze standards and auditing system on implementation of TQM.
6	Analyze standards for the operation of EMS.

Subject Code/Name: OBT751/ Analytical Methods and Instrumentation

Course Outcomes	At the end of this course students will be able to
1	Ability to understand the fundamental of electromagnetic radiations and various components used for optical instruments.
2	Ability to choose appropriate optical components for different wavelength and samples used in spectroscopy
3	Ability to assess and suggest a suitable spectrometry for a specific purpose, and evaluate absorbance and Transmission in the substance.
4	Ability to understand the working principle, types and applications of NMR and mass spectroscopy.
5	Ability to choose appropriate chromatography for various applications.
6	Ability to understand the working principle, types and applications of electro analysis and surface microscopy.

Subject Code/Name: E18761/ Industrial Automation Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand and Programming of PLC, SCADA and DCS
2	Ability to working with industrial automation system
3	Be able to design and implement control schemes in PLC & DCS
4	Ability to interface field devices with PLC & DCS
	N N

Subject Code/Name: E18762/ Instrumentation System Design Laboratory

Course Outcomes	At the end of this course students will be able to
1	Ability to understand design of signal conditioning circuits and instrumentation systems.
2	Ability to design controller, control valve and transmitter.
3	Be able to design and draw the piping diagram for industrial application projects.
4	Be able to design the multi-channel data acquisition system and transmitter

HOD/ELE
Head of the Department
Electronics & Instrumentation
Engineering
R.M.D. Engineering College

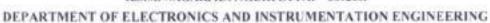
D. W. GINEERANDO ON SEEN ON SE

PRINCIPAL

PRINCIPAL

R.M.D. ENGINEERING COLLEGE

KAVARAIPETTAL - 801206


GUMMIDIPGENDI TALUK, THIRUVALLUR DIST.

R.M.D ENGINEERING COLLEGE

(An Autonomous Institution)

COURSE OUTCOMES (R 2017) EVEN SEMESTER

III Year Courses

Subject Code/Name: E18651/ Logic and Distributed control system

Course Outcomes	At the end of this course students will be able to
1	Understand all the important components of PLC and SCADA, I/O modules and field devices of an industrial automation system.
2	Develop PLC program in using ladder diagram for industrial sequentia applications.
3	Develop PLC program in using other languages for industrial sequential applications.
4	Understand all the important components of DCS and Smart field Devices of an industrial automation system.
5	Explain the most appropriate automation technologies for a given application.
6	Outline the recent developments in industrial automation.

Subject Code/Name: EI8691/ Computer Control of Process

Course Outcomes	At the end of this course students will be able to
1	Represent the linear time invariant System in discrete State Space form
2	Analyze the controllability, observability and stability of a Discrete time System
3	Estimate model parameters from input/output measurements
4	Design Digital Controllers
5	Design Multi-loop and Multivariable Controllers for multivariable system

Subject Code/Name: CS8391/ Data structures

Course Outcomes	At the end of this course students will be able to
1	Implement abstract data types using arrays and linked list.
2	Apply the different linear data structures like stack and queue to various computing problems.
3	Implement different types of trees and apply them to problem solutions.
4	Discuss graph structure and understand various operations on graphs and their applicability.
5	Analyze the various sorting and searching algorithms.
6	Understand the hashing technique and hash functions.

Subject Code/Name: E18692/ Electronic Instrumentation

Course Outcomes	At the end of this course students will be able to
1	Demonstrate various electronic instruments for measurement of voltage
2	Illustrate various types of cathode ray oscilloscopes and their applications
3	Summarize different types of signal analysers
4	Explain different types of waveform generators
5	Examine a measurement system using VI programming techniques
6	Apply different types of modulation and multiplexing techniques in telemetry

Subject Code/Name: E18077/ Power Electronics and Drives

Course Outcomes	At the end of this course students will be able to
1	Explain various devices and their structure, operating characteristics in the field of electronics.
2	Classify, analyze and design, Control rectifier, chopper and inverter.
3	Apply power electronic circuits for the control of popular applications.
4	Analyse the classification of Inverters
5	Apply Converter techniques in Electric Drives
6	Exposure to design and analyze PE circuits using simulation software.

Subject Code/Name: E18072 / Advanced Instrumentation Systems

Course Outcomes	At the end of this course students will be able to
1	Review the instrumentation behind flow, level, temperature and pressure measurement
2	Discuss about various types of analyzers used in typical industries
3	Discover about the role of Safety instrumented system in the industry
4	Explain Standards for applying Instrumentation in Hazards Locations.
5	Design, develop, and interpret the documents used to define instruments and contro Systems for a typical project
6	Describe about P&IDs, loop diagrams, Instrument lists, logic diagrams, installation details, and location plans

Subject Code/Name: CS8381/ Data Structures Laboratory

Course Outcomes	At the end of this course students will be able to
1	Write functions to implement linear and non-linear data structure operations
2	Suggest appropriate linear / non-linear data structure operations for solving a given problem
3	Appropriately use the linear / non-linear data structure operations for a given problem
4	Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval

Subject Code/Name: EI8661/ Process Control Laboratory

Course Outcomes	At the end of this course students will be able to
1	Understand and analyze process control engineering problems
2	Build dynamic models using input -output data of a process
3	Work with real time control loops(flow/level/temperature/pressure)
4	Acquire Knowledge on simulation tools such as MATLAB/LABVIEW/ASPEN
5	Learn and implement simple adaptive and model based control schemes

IV Year Courses

Subject Code/Name: GE8076/Professional Ethics in Engineering

Course Outcomes	At the end of this course students will be able to
1	Create awareness on human values and apply ethics in society.
2	Identify an ethical issue and assess variety of moral issues using ethical theories in engineering.
3	Analyze engineering, social experimentation and engineers as responsible experimenters.
4	Realize engineers' safety and their responsibilities, professional rights, employee rights, and intellectual property rights.
5	Interpret various types of ethics like business ethics, environmental ethics and computer ethics.
6	Take part an engineer as managers, consulting engineers, engineers as expert witness and advisors.

Subject Code/Name: E18078/Project Management and Finance

Course Outcomes	At the end of this course students will be able to
1	Study the current market trends and choose projects.
2	Prepare project feasibility reports.
3	Implement the project effectively meeting government norms and conditions.
4	Understand the role and responsibility of the Professional Engineer.
5	Assess social, health, safety issues based on the reasoning received from the contextual knowledge.
6	Choose projects which benefit the society and organization.

Head of the Department Electronics & Instrumentation Engineering

R.M.D. Engineering College Kavaraipettai - 601206 ENGINEERIA D. Kavaraipetta 0 PRINCIPAL

PRINCIPAL

R.M.D. ENGINEERING COLLEGE

KAVARAIPETTAI - 801205

GUMMIDIPOONDI TALUK, THRUVALLIR DIST.

R.M.D. ENGINEERING COLLEGE

(An Autonomous institution)
R.S.M.NAGAR, KAVARAIPETTAI-601206.

DEPARTMENT OF INFORMATION TECHNOLOGY COURSE OUTCOMES

Date: 12.08.2021

SEMESTER- III

SUBJECT CODE/NAME: MA8351 - DISCRETE MATHEMATICS

Course Outcomes	At the end of this course students will be able to
1	Identify the concepts needed to test the logic of a program
2	Solve problems in mathematical induction, counting principles, permutation and combination
3	Solve problems in recurrence relations
4	Utilize graph theory conceptsin computer science
5	Utilize the concepts and properties of algebraic structures such as groups, rings and fields.
6	Solve problems in lattices and Boolean algebra

SUBJECT CODE/NAME: CS8351 - DIGITAL PRINCIPLES AND SYSTEM DESIGN

Course Outcomes	At the end of this course students will be able to
1	Simplify Boolean functions using K-map
2	Design and Analyse Combinational circuits with HDL description
3	Design and Analyse Sequential circuits
4	Design and Analyse Sequential circuits (Registers and Counters) with HDL description
5	Design and Analyse Asynchronous Sequential circuits
6	Implement designs using Programmable Logic Devices

SUBJECT CODE/NAME: CS8391 – DATA STRUCTURES

Course Outcomes	At the end of this course students will be able to
1	Implement abstract data types for linked list data structureand apply for
	problem solution
2	Examine abstract data types for stack and queue data structure and apply for
2	problem solution
2	Examine abstract data types for basic tree data structure (BST, Expression
3	trees, AVL trees) and apply for problem solution
	Implement abstract data types for advanced tree (B-Trees, B+ Tree,
4	Threaded Binary Tree) and heap data structures and apply for problem
	solution
5	Inspect abstract data types for graph data structures and apply for problem
	solution
6	Critically analyse the various sorting, searching algorithms, and hashing
	techniques

SUBJECT CODE/NAME: CS8392 - OBJECT ORIENTED PROGRAMMING

Course Outcomes	At the end of this course students will be able to
1	Develop Java programs based on OOP principles
2	Develop and Test Java programs based on inheritance and interfaces
3	Build and Test Java applications using exceptions and I/O streams
4	Develop and Test Java applications with threads
5	Build Java applications with generic classes.
6	Develop and Test interactive Java programs with Swings

SUBJECT CODE/NAME: EC8394 - ANALOG AND DIGITAL COMMUNICATION

Course Outcomes	At the end of this course students will be able to
1	Make use of the principles of analog communication techniques
2	Make use of the principles of pulse communication techniques
3	Utilize the fundamentals of data communication
4	Utilize the principles of digital communication techniques
5	Solve source coding and error control coding problems
6	Make use of the fundamentals of multi-user radio communication

SUBJECT CODE/NAME: CS8381 - DATA STRUCTURES LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop and Test C programs to implement linear data structures
2	Use appropriate linear data structures for the given problem
3	Develop and Test C programs to implement non-linear data structures
4	Use and Test appropriate non-linear data structures for the given problem
5	Develop and Test C programs for implementing sorting and searching algorithms
6	Use and Test appropriate hashing techniques for the given problem

SUBJECT CODE/NAME: CS8383 - OBJECT ORIENTED PROGRAMMING LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop and Test Java programs to implement simple applications that make use of classes and packages
2	Develop and Test Java programs to implement simple applications that make use of inheritance and interfaces
3	Develop and Test Java programs to implement applications with arraylist and exception handling
4	Develop and Test Java programs to implement applications with multi- threading
5	Develop and Test Java programs to implement applications with file processing
6	Develop and Test Java programs to implement applications with generic programming and event handling

SUBJECT CODE/NAME: CS8382 – DIGITAL SYSTEMS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Implement and Inspect simplified combinational circuits using logic gate
2	Implement and Inspect simplified combinational circuits using MSI devices
3	Implement and Inspect various shift registers
4	Implement and Inspect various counters
5	Model and Examine combinational circuits using HDL

SUBJECT CODE/NAME: HS8381 – INTERPERSONAL SKILLS/LISTENING AND SPEAKING

Course Outcomes	At the end of this course students will be able to
1	Listen and respond appropriately
2	Participate in group discussions
3	Make effective presentations
4	Participate confidently and appropriately in conversations both formal and informal
5	Attend the classes regularly
6	Submit the Observation and Record regularly.

SEMESTER - IV SUBJECT CODE/NAME: MA8391 – PROBABILITY AND STATISTICS

Course Outcomes	At the end of this course students will be able to
1	Apply the fundamental knowledge of the concepts of probability which can describereal life phenomenon
2	Compare and Contrast various standard distributions which can describe real lifephenomenon
3	Make use of the basic concepts of one and two dimensional random variables inengineering applications
4	Examine the concept of testing of hypothesis for small and large samples in real lifeproblems
5	Inspect the basic concepts of classifications of design of experiments for theengineering problems.
6	Examine the statistical techniques used in engineering statistical quality control andmanagement problems.

SUBJECT CODE/NAME: CS8491 – COMPUTER ARCHITECTURE

Course Outcomes	At the end of this course students will be able to
1	Identify the basic organization of computer system and performance of a computer system.
2	Utilize the basic instruction set, operations and addressing modes of MIPSarchitecture.
3	Examine the procedure involved in designing ALU
4	Compare and Contrast the non-pipelined and pipelined data path implementation of MIPS
5	Inspect Parallel Processing challenges, Hardware Multithreading and Multicorearchitectures
6	Examine the performance of Memory and I/O systems.

SUBJECT CODE/NAME: CS8492 – DATABASE MANAGEMENT SYSTEMS

Course Outcomes	At the end of this course students will be able to
1	Classify the modern and futuristic database applications based on size and complexity.
2	Construct Relational model from ER model to perform database design effectivelyand optimize queries using normalization criteria.
3	Examine the database transaction concepts
4	Compare and contrast various indexing strategies in different database systems
5	Examine query optimization algorithms and query optimization techniques
6	Compare and Contrast the distributed database architectures and traditional databasearchitecture.

SUBJECT CODE/NAME: CS8451 – DESIGN AND ANALYSIS OF ALGORITHMS

Course Outcomes	At the end of this course students will be able to
1	Examine mathematically the notion of algorithm, asymptotic notations, and algorithmic efficiency with properties.
2	Inspect the time and space complexity of the algorithms designed using brute force and divide and conquer methods
3	Inspect the time and space complexity of the algorithms designed using dynamicprogramming techniques.
4	Inspect the time and space complexity of the algorithms designed using greedytechniques.
5	Examine various iterative improvement techniques.
6	Identify the limitations of algorithm power.

SUBJECT CODE/NAME: CS8493 – OPERATING SYSTEMS

Course Outcomes	At the end of this course students will be able to
1	Explain the basics of operating systems like kernel, shell, types and views of operating systems
2	Examine process management with various Scheduling algorithms
3	Inspect the principles of concurrency and deadlock.
4	Compare and Contrast various memory management schemes.
5	Examine file system implementation, protection and security mechanisms.
6	Compare IoS and Android operating systems and perform administrative tasks on Linux servers.

SUBJECT CODE/NAME: GE8291 – ENVIRONMENTAL SCIENCE AND ENGINEERING

Course Outcomes	At the end of this course students will be able to
1	Summarize the concepts of Biodiversity, environment and ecosystem
2	Outline various sources of environmental pollution
3	Identify various natural resources such as Forest, Water and Mineral
4	Identify various natural resources such as Food, Energy and Land
5	Summarize various social issues and impact related to environment.
6	Explain the impact of human population toward environment sustainability

SUBJECT CODE/NAME: CS8481 – DATABASE MANAGEMENT SYSTEMS LABORATORY

2.ID ORUTORT	
Course Outcomes	At the end of this course students will be able to
1	Make use of typical data definitions and manipulation commands
2	Test the implementation of nested and join queries
3	Develop simple application using views, sequences and synonyms.
4	Inspect and implement applications that require front-end tools
5	Examine database programming using implicit and explicit cursors.
6	Test the implementation of Tables, views, functions, procedures, triggers and exceptionhandling.

SUBJECT CODE/NAME: CS8461 – OPERATING SYSTEMS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Make use of Linux commands, develop shell programs, implement system calls and simulate Linux commands
2	Test the implementation of processes and IPC
3	Compare the performance of various CPU scheduling algorithms
4	Experiment with the implementation of semaphores, deadlock avoidance algorithm and deadlock detection algorithm
5	Compare the implementation of various memory allocation, memory management andpage replacement strategies.
6	Examine the implementation of file allocation and file organization strategies.

SUBJECT CODE/NAME: HS8461 – ADVANCED READING AND WRITING

Course Outcomes	At the end of this course students will be able to
1	Write different types of Essays
2	Write winning job applications
3	Read and evaluate texts critically
4	Display critical thinking in various professional contexts
5	Attend the classes regularly
6	Submit the Observation and Record regularly.

SEMESTER - V SUBJECT CODE/NAME: MA8551 – ALGEBRA AND NUMBER THEORY

Course Outcomes	At the end of this course students will be able to
1	Apply the basic notions of groups, rings, fields which will then be used to solverelated problems
2	Apply the fundamental concepts of advanced algebra and their role in modernmathematics and application contexts
3	Examine accurate and efficient use of advanced algebraic techniques
4	Solve non - trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text
5	Examine integrated approach to number theory and abstract algebra, and provide afirm basis for further reading and study in the subject.

SUBJECT CODE/NAME: CS8591 - COMPUTER NETWORKS

Course Outcomes	At the end of this course students will be able to
1	Explain the basic layers and its functions, and transmission media in computernetworks
2	Examine the performance of different types of networks
3	Inspect the functionalities of data link and media access control protocols
4	Examine different routing algorithms
5	Identify appropriate protocol to be used at the transport layer
6	Explain the working of various application layer protocols.

SUBJECT CODE/NAME: EC8691 – MICROPROCESSORS AND MICROCONTROLLERS

Course Outcomes	At the end of this course students will be able to
1	Develop 8086 microprocessor based assembly language programs for specifiedproblem
2	Examine the 8086 signals, bus structure, I/O programming and multiprocessorconfigurations
3	Inspect various I/O interfacing mechanisms with 8086 microprocessor
4	Examine various programming and application case studies based on 8086microprocessor
5	Develop 8051 microcontroller based assembly language programs for specifiedproblem
6	Examine various interfacing mechanisms with 8051 microcontroller

SUBJECT CODE/NAME: IT8501 – WEB TECHNOLOGY

Course Outcomes	At the end of this course students will be able to
1	Develop simple web pages using markup languages like HTML and XHTML
2	Build dynamic web pages using DHTML and Java script that is easy to navigate and Use
3	Develop server side web pages that have to process request from client side webpages
4	Develop applications using JSP
5	Represent web data using XML and develop web pages using JSP
6	Explain various web services and how they interact

SUBJECT CODE/NAME: CS8494 – SOFTWARE ENGINEERING

Course Outcomes	At the end of this course students will be able to
1	Identify the key activities in managing a software project
2	Compare different process models
3	Summarize the concepts of requirements engineering and analysis modelling
4	Make use of systematic procedure for software design and deployment
5	Compare and contrast the various software testing and maintenance strategies
6	Develop project schedule, identify project costs and efforts required

SUBJECT CODE/NAME: OCE552 – GEOGRAPHIC INFORMATION SYSTEM

Course Outcomes	At the end of this course students will be able to
1	Explain the fundamental concepts about Geographic Information System
2	Summarize the different types of data models
3	Explain about data input and topology
4	Make use of different data analysis tools for data quality and standards
5	Demonstrate the different application areas of Geographic Information System withcase studies

SUBJECT CODE/NAME: EC8681 – MICROPROCESSORS AND MICROCONTROLLER LABORATORY

course Outcomes	At the end of this course students will be able to
1	Develop and Test 8086 based ALP for fixed and floating point arithmetic operations
2	Develop and Test 8086 based ALP for moving data block without overlap, codeconversion, decimal arithmetic and matrix operations
3	Develop and Test 8086 based ALP for string manipulation, sorting, searching, password checking, printing RAM size, counters ad time delay
4	Develop and Test 8086 based ALP for interfacing various I/O
5	Develop and Test 8051 based ALP for basic arithmetic and logical operations
6	Develop and Test 8051 based ALP for square wave generation, finding 2 ^S compliment and converting unpacked BSD to ASCII

SUBJECT CODE/NAME: CS8581 – NETWORKS LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Examine the use of various commands using a network protocol analyzer
2	Experiment with TCP and UDP protocols to implement echo client, echo server, chatand file transfer
3	Compare the performance of transport layer protocols
4	Examine the performance of various network protocols
5	Examine various routing algorithms
6	Infer the importance and implementation of error correcting codes

SUBJECT CODE/NAME: IT8511 - WEB TECHNOLOGY LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Test the working of simple web pages designed using markup languages like HTMLand XHTML
2	Examine dynamic web pages created using DHTML and Java script
3	Test the working of server side web pages implemented for handling requests from client side web pages
4	Inspect the installation of Apache Tomcat web server
5	Categorize web data using XML and develop web pages using JSP
6	Examine the interactions of web services

SEMESTER - VI SUBJECT CODE/NAME: IT8601 – COMPUTATIONAL INTELLIGENCE

Course Outcomes	At the end of this course students will be able to
1	Utilize search algorithms and genetic algorithms for problem solving.
2	Make use of knowledge representation and reasoning techniques in applications which involve perception, reasoning and learning.
3	Make use of fuzzy logic reasoning in applications which involve perception, reasoning and learning.
4	Utilize Bayesian networks, hidden Markov model, supervised learning and decisiontree approaches for various applications.
5	Utilize linear regression and classification, Artificial Neural Networks for applications involves learning
6	Make use of computational intelligence techniques for information retrieval.

SUBJECT CODE/NAME: CS8592 – OBJECT ORIENTED ANALYSIS AND DESIGN

Course Outcomes	At the end of this course students will be able to
1	Utilize unified process and use case diagrams for software design
2	Construct static UML diagrams for software design process
3	Construct dynamic UML diagrams for software design process
4	Construct implementation UML diagrams for software design process
5	Transform UML based software design into pattern based design using designpatterns
6	Utilize various testing methodologies for object oriented software design.

SUBJECT CODE/NAME: IT8602 - MOBILE COMMUNICATION

Course Outcomes	At the end of this course students will be able to
1	Summarize the basics of mobile telecommunication system and generations of mobile communication technologies
2	Compare various MAC protocols such as TDMA, FDMA and CDMA
3	Examine the various mobile telecommunication systems such as GSM, GPRS and UMTS
4	Inspect the architectures of various wireless LAN technologies
5	Determine the functionality of network layer and Identify a routing protocol for a given Adhoc networks
6	Summarize the functionality of Transport and Application layer

SUBJECT CODE/NAME: CS8091 – BIG DATA ANALYTICS

Course Outcomes	At the end of this course students will be able to
1	Identify big data use cases, characteristics and make use of HDFS and Map- reduceprogramming model for data analytics
2	Examine the data with clustering and classification techniques
3	Discover the similarity of huge volume of data with association rule mining andexamine recommender system
4	Perform analytics on data streams
5	Inspect NoSQL database and its management
6	Examine the given data with R programming

SUBJECT CODE/NAME: CS8092 - COMPUTER GRAPHICS AND MULTIMEDIA

Course Outcomes	At the end of this course students will be able to
1	Make use of various illumination and color model during graphic design
2	Design two dimensional graphics
3	Design three dimensional graphics
4	Utilize various transformation and clipping techniques for graphics
5	Inspect the different types of multimedia file formats
6	Design Basic 3d Scenes using Blender

SUBJECT CODE/NAME: IT8076 - SOFTWARE TESTING

Course Outcomes	At the end of this course students will be able to
1	Summarize software testing principles, origin of defect, cost of defects, defectclasses and defect repository
2	Design test cases suitable for a software development for different domains
3	Identify suitable tests to be carried out and document test plans and test case designed
4	Determine test planning based on the document
5	Develop and validate a test plan
6	Make use of automatic testing tools

SUBJECT CODE/NAME: CS8662 - MOBILE APPLICATION DEVELOPMENT LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Design mobile applications using GUI and Layouts
2	Design mobile applications using Event Listener
3	Design mobile applications using Databases
4	Design mobile applications using RSS Feed, Internal/External Storage
5	Design mobile applications using SMS, Multithreading and GPS
6	Inspect and discover own mobile app for simple needs

SUBJECT CODE/NAME: CS8552 – OBJECT ORIENTED ANALYIS AND DESIGN LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Identify and map basic software requirements in UML mapping
2	Identify use cases and develop the Use Case model
3	Test the compliance of the software with the SRS
4	Identify the conceptual classes and develop a Domain Model and also derive from ita Class diagram
5	Using the identified scenarios, find the interaction between objects and representthem using UML Sequence and Collaboration Diagrams
6	Develop reusability and maintainability of the software system by applying appropriate design patterns

SUBJECT CODE/NAME: IT8661 - MINI PROJECT

Course Outcomes	At the end of this course students will be able to
1	Determine appropriate methodologies for solving problems related to real lifesituations using the engineering knowledge
2	Comprehend the existing solutions and summarize problem definition
3	Determine design strategies for providing solution to a problem
4	Acquire skills of collaboration and working in teams.
5	Communicate ideas clearly both orally and in written

SUBJECT CODE/NAME: HS8551 – PROFESSIONAL COMMUNICATION LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop adequate Soft Skills required for the workplace
2	Make use of effective presentations
3	Utilize Group Discussions or increasing the confidence level
4	Develop interview etiquette and be successful in interview process
5	Develop long-term career plan, stress and time management, respecting socialprotocols

SEMESTER - VII

SUBJECT CODE/NAME: MG8591 – PRINCIPLES OF MANAGEMENT

Course Outcomes	At the end of this course students will be able to
	Describe the influence of historical forces on the current practice of management and primary types of managers and the roles they play
1 2	Summarize different types of organization, culture, environment and current trends and issues in management
1 3	Explain planning process, types, policies, strategic management, tools, techniques and decision making steps and process.
4	Describe the purpose of organization, chart, structure and human resource Management
5	Summarize the behavioral skills, motivation theories, techniques and leadership Skills needed for directing.
6	Outline the system and process of controlling

SUBJECT CODE/NAME: CS8792 – CRYPTOGRAPHY AND NETWORK SECURITY

Course Outcomes	At the end of this course students will be able to
1	Identify the fundamentals of networks security, security architecture, threats and vulnerabilities
2	Examine the mathematical concepts to deal with symmetric key and asymmetric key cryptography
1 3	Inspect the use of the different cryptographic operations of symmetric cryptographic algorithms
4	Inspect the use of the different cryptographic operations of public key cryptography
5	Examine the various Authentication schemes to simulate different applications
6	Make use of various Security practices and System security standards

SUBJECT CODE/NAME: CS8791 - CLOUD COMPUTING

Course Outcomes	At the end of this course students will be able to
1	Inspect the main concepts, key technologies, strengths and limitations of cloud Computing
2	Identify the key and enabling technologies that help in the development of cloud
3	Examine the use of architecture of compute and storage cloud, service and delivery models
4	Examine the core issues of cloud computing such as resource management and security
5	Build and Make use of current cloud technologies
6	Examine the appropriate technologies, algorithms and approaches for implementation and use of cloud

SUBJECT CODE/NAME: GE8077 – TOTAL QUALITY MANAGEMENT

Course Outcomes	At the end of this course students will be able to
1	Develop an understanding on quality management philosophies and frameworks
2	Develop in-depth knowledge on various principles of total quality management
3	Make use of quality tools and techniques such as seven management tools, Six Sigma, Benchmarking, FMEA
4	Make use of quality tools and techniques such as cost of quality, QFD, Taguchi Loss function, TPM and performance measures
5	Outline the various quality management standards
6	Summarize the various environmental management system standard

SUBJECT CODE/NAME: CS8079 - HUMAN COMPUTER INTERACTION

Course Outcomes	At the end of this course students will be able to
1	Examine the effective dialog for HCI
2	Inspect interactive design process in human computer interaction
3	Inspect software design process in human computer interaction
4	Examine various models and theories related to human computer interaction
1	Utilize the HCI implications for designing multimedia/ ecommerce/ e-learning Web sites
6	Build meaningful user interface

SUBJECT CODE/NAME: OME752 – SUPPLY CHAIN MANAGEMENT

Course Outcomes	At the end of this course students will be able to
1	Summarize the role of logistics in supply chain management
2	Explain the concept of supply chain network design
3	Interpret the logistics in supply chain management
4	Explain the concept of sourcing and coordination in supply chain management
5	Summarize the role of information technology in supply chain management

SUBJECT CODE/NAME: IT8711 – FOSS & CLOUD COMPUTING LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop applications using gcc, make, version control system
2	Examine the working of web applications after deployed in Paas environment
3	Inspect various virtualization tools such as Virtual Box, VMware workstation
4	Test for implementing new schedulers through simulation in cloud environment
5	Make use of a generic cloud environment that can be used as a private cloud.
6	Inspect the manipulation of large data sets in a parallel environment

SUBJECT CODE/NAME: IT8761 – SECURITY LABORATORY

Course Outcomes	At the end of this course students will be able to
1	Develop code for classical Encryption Techniques to solve the problems.
· ')	Examine cryptosystems by applying symmetric and public key encryption algorithms
3	Test the use of the code for authentication algorithms
4	Examine a signature scheme using Digital signature standard
5	Inspect the network security system using open source tools for IDS
6	Inspect the network security system using open source tools for automated attack and penetration tools, defeating malware

SEMESTER – VIII

SUBJECT CODE/NAME: GE8076 –PROFESSIONAL ETHICS IN ENGINEERING

Course Outcomes	At the end of this course students will be able to
1	Create awareness on human values and apply ethics in society.
2	Identify an ethical issue and assess variety of moral issues using ethical theories in engineering.
1 3	Analyze engineering, social experimentation and engineers as responsible experimenters
1 1	Infer engineers' safety and their responsibilities, professional rights, employee rights, and intellectual property rights.
1 5	Interpret various types of ethics like business ethics, environmental ethics and computer ethics.
6	Take part an engineer's as managers, consulting engineers, engineers as expert witness and advisors.

SUBJECT CODE/NAME: IT8005 - ELECTRONIC COMMERCE

Course Outcomes	At the end of this course students will be able to
1	Design Website using HTML CSS and JS.
2	Design Responsive sites.
3	Construct Web Apps, manage, maintain and support Web Apps.
4	Summarize the basic concepts and technologies used in the field of management information systems.
5	Identify the ethical, social, and security issues of information systems.
6	Examine how some of the technologies detailed in the course are used in concert to realize atypical commercial system.

SUBJECT CODE/NAME: IT8811 - PROJECT WORK

Course Outcomes	At the end of this course students will be able to
1	Determine appropriate methodologies for solving problems related to real life situations using the engineering knowledge.
2	Comprehend the existing solutions and summarize problem definition.
3	Determine design strategies for providing solution to a problem.
4	Acquire skills of collaboration and working in teams.
5	Select and Evaluate different tools and techniques for validating the solution to the problem under consideration.
6	Communicate ideas clearly both orally and in written.

HOD/IT

PROFESSOR & HEAD

DEPARTMENT OF INFORMATION TECHNOLOGY

R.M.D. ENGINEERING COLLEGE

R.S.M. NAGAR, KAVARAIPETTAL-601 204

TIRUVALLUR DIST. TAMILNADII

MEERING COLL

PRINCIPAL

PRINCIPAL R.M.D. ENGINEERING COLLEGE

KAVARAIPETTAI - 601206 GUMMDIPOONDI TALUK, THIRUVALLUR DIST.